# CORPORATE RESEARCH PROGRAM IN CLIMATE/CO2-GREENHOUSE

A. J. CALLEGARI

FEBRUARY 2, 1984

## CORPORATE RESEARCH PROGRAM

### OBJECTIVES

- PROVIDE EXXON WITH A SOURCE OF EXPERTISE IN AN AREA WHICH COULD HAVE MAJOR IMPACT ON FUTURE BUSINESS ENVIRONMENT
- HELP STIMULATE AND CONTRIBUTE TO A BROAD SCIENTIFIC INVESTIGATION OF CO2 EFFECTS

### APPROACHES

- ESTABLISH A SCIENTIFIC PRESENCE THROUGH RESEARCH PROGRAM IN CLIMATE MODELING
- SELECTIVE SUPPORT OF OUTSIDE ACTIVITIES
- MAINTAIN AWARENESS OF NEW SCIENTIFIC DEVELOPMENTS

# CONCENTRATION OF ATMOSPHERIC CO<sub>2</sub> AT MAUNA LOA OBSERVATORY, HAWAII





## BASIS FOR CO2-GREENHOUSE EFFECT

- ATMOSPHERIC ABSORPTION OF INFRARED RADIATION INCREASES EARTH'S TEMPERATURE BY ~35°K
- INCREASING CO2 AND OTHER TRACE GASES ABSORB IN THE REMAINING ATMOSPHERIC WINDOWS



### ROLE OF MATHEMATICAL MODELING

- MODELS ARE BEING USED TO EXPLORE PHYSICAL EFFECTS (SCENARIOS) AND AS A PREDICTIVE TOOL
  - CARBON CYCLE MODELING TO DETERMINE FATE OF FOSSIL-FUEL  $\mathrm{CO}_2$  EMISSIONS
  - CLIMATE MODELING TO STUDY EFFECTS OF ATMOSPHERIC  ${\rm CO_2}$  INCREASES ON THE EARTH'S CLIMATE
- VALIDITY OF MODELS NOT ESTABLISHED
  - COMPLEXITY OF CARBON CYCLE AND CLIMATE SYSTEM REQUIRE MANY APPROXIMATIONS AND PARAMETERIZATIONS
  - GEOLOGICAL AND HISTORICAL DATA ARE INADEQUATE FOR VALIDATION OF MODELS

# CLIMATE MODEL CONSENSUS

- ESTIMATES OF THE CHANGE IN GLOBAL AVERAGE SURFACE TEMPERATURE DUE TO VARIOUS CHANGES IN CO2 CONCENTRATION
  - SHADING SHOWS PRESENT RANGE OF NATURAL FLUCTUATIONS



# FIRST EFFECTS PREDICTED BY YEAR 2000



## POTENTIAL CLIMATIC EFFECTS

- CLIMATIC EFFECT OF CO2 DOUBLING (NRC)
  - MEAN SURFACE TEMPERATURE RISE OF BETWEEN 1.5°C AND 4.5°C WITH "VALUES IN LOWER HALF OF RANGE MOST PROBABLE"
  - SIGNIFICANT LATITUDINAL TEMPERATURE VARIATIONS WITH INCREASES 2-3 TIMES MEAN IN POLAR REGIONS
  - COVERAGE AND THICKNESS OF SEA ICE DECREASES SEA LEVEL RISE
  - HYDROLOGICAL CHANGES INDICATING SUMMER SOIL MOISTURE DECREASES IN MIDDLE AND HIGH LATITUDES OF NORTHERN HEMISPHERE
- ACTIVE AREAS OF SCIENTIFIC RESEARCH
  - MODEL VALIDATION TO STRENGTHEN CURRENT CONSENSUS
  - MONITORING AND EARLY DETECTION STRATEGIES

## CR ACTIVITIES

- CR RESEARCH IN CLIMATE MODELING AND CO2-GREENHOUSE EFFECT (CALLEGARI, FLANNERY, HOFFERT (NYU))
  - EMPHASIZES ENERGY BALANCE MODELS
    - (1) EXPLORE PHYSICAL EFFECTS (SCENARIOS)
    - (2) TRANSIENT MODELING
- SERVE ON DOE-STATE-OF-THE-ART SUBCOMMITTEE THAT WILL PRODUCE REPORT ON TRANSIENT CLIMATE MODELING AND RESPONSE TO CO2 INCREASES
  - PART OF GENERAL STATE-OF-THE-ART DOE REPORT
- SUPPORT RESEARCH AT COLUMBIA UNIVERSITY'S LAMONT GEOLOGICAL OBSERVATORY (BROECKER, TAKAHASHI)
  - OCEANIC CO2-UPTAKE
  - OUTGROWTH OF EXXON TANKER PROGRAM

#### EXXON SPONSORED LAMONT PROGRAM

- OCEANIC CO2 MEASUREMENT PROGRAM: AIR-SEA EXCHANGE, TRANSPORT, CHEMISTRY IN WINTER NORTH ATLANTIC
  - CARBON CYCLE AIRBORNE FRACTION
  - PRE-INDUSTRIAL ATMOSPHERIC CO2 CONTENT
  - SEASONAL P(CO2) VARIATION IN MIXED LAYER
- RESULTS THUS FAR INDICATE MUCH MORE VARIABILITY (SEASONAL) IN OCEAN CIRCULATION THAN PREVIOUSLY THOUGHT
  - WINTER CO<sub>2</sub>-UPTAKE AND TRANSPORT TO DEEP WATER COMPLEX DUE TO LOCALLY LOWER AIR-SEA EXCHANGE BUT HIGHER DEEP WATER VENTILATION
  - DETERMINATION OF PRE-INDUSTRIAL ATMOSPHERIC CO<sub>2</sub>-CONTENT BY CONSIDERING DEEP WATER CO<sub>2</sub> MORE COMPLEX DUE TO STRONG SEASONAL VARIABILITY
- THESE DATA UPSET CURRENT "UNDERSTANDING" OF CO2 UPTAKE BY THE OCEAN.

### EXXON, 3 COMPONENT ENERGY BALANCE MODEL

COMPONENTS: AIR, SEA, LAND "SURFACE TEMPERATURE"

LOCAL PHYSICS: INSOLATION, ALBEDO, ICE ALBEDO FEEDBACK

SENSIBLE HEAT EXCHANGE ∞∆T

LATENT HEAT EXCHANGE  $\sim \Delta (r_a q_{sat})$ 

IR FLUX LAND, SEA ∝ σT<sup>4</sup>

ATMOSPHERIC IR: BOA, TOA FROM LOWTRANS

TRANSPORT: SEA THERMAL DIFFUSION ∞ D ∂T ∂X

AIR DIFFUSION [LATENT + THER MAL ENERGY]

$$\propto D \frac{\partial}{\partial X} T (1 + \psi_L)$$

DEEP SEA TRANSPORT [UPWELLING AND EDDY DIFFUSIVITY]

$$\propto WT + K \frac{\partial T}{\partial z}$$

## EBM POLAR AMPLIFICATION

## EBM TEMPERATURE CHANGE VS LATITUDE





MANABE & WETHERALD 1980 J. ATMOS. SCI.

20 x CO<sub>2</sub> COMPARISON TEMPERATURE DISTRIBUTION



## STATUS AND NEW RESEARCH DIRECTIONS

- ADVANCED MULTI-PURPOSE MODEL FOR EXPLORING PHYSICAL EXPLANATIONS OF CLIMATE VARIATION
  - EVOLUTIONARY SCENARIOS FOR  $co_2$  AND TRACE GAS EFFECTS
- OCEANIC ROLE IN FUTURE CO2 BUILD-UP
  - SEASONAL CYCLE IN SURFACE WATERS
  - LONG TERM MIXING DEEP OCEANS
  - CHANGES IN AIRBORNE FRACTION
- RELATE PLAUSIBLE PHYSICAL SCENARIOS TO PALEOCLIMATE RECORD
  - VALIDATION OF THE CLIMATE MODEL AND MECHANISMS
  - INCREASED INSIGHT INTO GEOHISTORY RELATIONS
  - E.G. ICE AGES

MILANKOVITCH CYCLES

OCEANIC DEGASSING OF CO2



GAS EXCHANGE (7.9 YEARS)

CAPACITY: CHEMISTRY

RATE: SMALL SCALE FLUID

DYNAMICS

CHEMISTRY (.1 YEAR)

BIOLOGY (.2 YEAR)

MIXED LAYER CO<sub>2</sub> SINK

REGENERATION WITH DEPTH

MIXING (.3-1000 YEARS)

- SIGNIFICANT CO<sub>2</sub> ENTERS OCEAN BECAUSE OF CARBONATE CHEMISTRY (8 FOLD INCREASE OVER PURE WATER)
- SMALL CHANGES IN OCEAN CARBON CONTENT CAN CAUSE LARGE CHANGES IN ATMOSPHERIC CO<sub>2</sub> CONCENTRATION

- REVELL FACTOR: 
$$\frac{\delta PCO_2}{PCO_2}$$
 ATMOS.  $\frac{\delta \text{ (TOTAL INORGANIC CARBON)}}{TOTAL INORGANIC CARBON} = 9 - 13$ 

- BIOSPHERIC CARBON FLUX MAINTAINS MIXED LAYER UNDERSATURATION OF CO<sub>2</sub> AND SMALL CHANGES ARE MAGNIFIED BY REVELL FACTOR
  - BIOSPHERE NUTRIENT LIMITED